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Goal

(I) In this lecture we will study rationality issues for algebraic
groups, by focusing on a key example for the second
semester, and then state the main (and deep) properties of
arithmetic groups in algebraic groups. Finally, we introduce
some key new players: adelic groups.



Rationality issues

(I) Let k be a field of characteristic 0 and let K be an
algebraically closed extension of k (in practice K = C and
k ∈ {Q,R}). All varieties are affine and over K .

(II) For a variety X ⊂ Kn with ideal IX ⊂ K [T1, ...,Tn] the
following statements are equivalent (this fails in positive
characteristic), and if they are satisfied we say that X is
defined over k (or a k-variety)

• X is the set of solutions in Kn of some polynomial
equations with coefficients in k

• σ(X ) ⊂ X for all σ ∈ Aut(K/k)

• IX is generated by IX ∩ k[T1, ...,Tn].
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Rationality issues

(I) If X is defined over k , then the k-algebra (of regular
functions defined over k)

k[X ] := k[T1, ...,Tn]/(IX ∩ k[T1, ...,Tn])

satisfies k[X ]⊗k K = K [X ] and X gives rise to a functor of
points

X : {k − algebras} → Sets, X (A) := Homk−alg(k[X ],A).

If G is a k-group (i.e. an algebraic group defined over k)
the functor of points factors through Groups.

(II) A morphism f : X → Y of affine k-varieties is said to be
defined over k (or a k-morphism) if ϕ ◦ f ∈ k[X ] for any
ϕ ∈ k[Y ]. The functor X → k[X ] gives an anti-equivalence
between k-varieties (with k-morphisms) and reduced
k-algebras of finite type.
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Rationality issues

(I) Algebraic groups interact well with rationality properties:

• if G is a k-group, then so are G 0, Z (G ), Gder, Ru(G ).

• If G ⊂ GLn(K ) is defined over k , then its Lie algebra g is
defined over k , i.e. gk ⊗k K ' g with gk := g ∩Mn(k). If
K = C and G is defined over R then gR = Lie(G (R)).

• if f : G → H is a k-morphism of k-groups, then f (G ) is
defined over k . Thus if H is a normal k-subgroup of a
k-group G then G/H is a k-group.



Rationality issues

(I) It’s an excellent exercise to show that SLn(Q) is Zariski
dense in SLn(C). Try to do it with SO(n). A huge
generalisation is:

Theorem (Rosenlicht) If G is a connected k-group, then
G (k) is Zariski dense in G .

(II) Rosenlicht also proved that any connected k-group G has a
maximal torus defined over k . Unfortunately, not any
connected (even reductive) k-group has a Borel subgroup
defined over k . Such groups are called quasi-split over k .
Their class includes the important class of split groups, that
we discuss next.
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Split tori

(I) A k-torus T is called split over k if there is an isomorphism
defined over k between T and the group of diagonal
matrices in some GLn(K ). A k-group may not have a k-split
maximal torus, but it always has a maximal k-split torus
(sic!). The following theorem is very difficult:

Theorem (Borel,Tits)
In a connected reductive k-group G all maximal k-split tori
are conjugate under G (k).



Split groups

(I) The connected reductive group G is called split over k if G
has a maximal torus that is split over k .

(II) The Chevalley-Demazure theorem classifies split connected
reductive k-groups in terms of reduced root data: all
statements that we saw last time over K are valid over k if
the surrounding group is split over k.

(III) In particular any connected reductive k-group G is
isomorphic over the algebraic closure k̄ of k in K to a
split group over k, i.e. G is a k-form of a split group over k .
Such forms are classified by H1(Galk ,Aut(G )), where
Galk = Aut(k̄/k).
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Tori over a field

(I) Say K = k̄ . Then Aut(Gd
m) ' GLd(Z), with trivial Galois

action, so k-tori of rank d are classified by homomorphisms
Galk → GLd(Z) with finite image. Where do these come
from?

(II) Any k-torus T is defined over a finite extension of k , thus
Galk acts on X (T ) by a finite quotient. This induces an
anti-equivalence between k-tori and finite free Z-modules
together with an action of Galk factoring through a finite
quotient.

(III) The k-torus T is k-split if and only if Galk acts trivially on
X (T ), i.e. all characters T → Gm are defined over k,
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Forms of SL2

(I) Keep K = k̄ . It’s an excellent exercise to show that
Aut(SL2(K )) = PSL2(K ) = PGL2(K ). The group
H1(Galk ,PGL2(K )) is related to quaternion algebras. More
generally H1(Galk ,PGLn(K )) is the set of isomorphism
classes of central simple k-algebras of dimension n2 (since
AutK−alg(Mn(K )) = PGLn(K )).

(II) A quaternion algebra over a field F (of characteristic 0,
say) is a central simple algebra of dimension 4 over F .
Concretely, all such algebras are of the form

D = F ⊕ Fi ⊕ Fj ⊕ Fk

with i2 = a, j2 = b, ij = −ji = k , for some a, b ∈ F ∗.
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Forms of SL2

(I) If D is as above, its reduced norm

N : D → F , N(x + yi + zj + tk) = x2 − ay2 − bz2 + abt2

is multiplicative.

(II) Indeed, if α, β ∈ F̄ are such that α2 = a, β2 = b, then we
have an isomorphism of F̄ -algebras ϕ : D ⊗F F̄ ' M2(F̄ )

ϕ(x1 + x2i + x3j + x4k) =

(
x1 + x2α x3 + x4α

b(x3 − x4α) x1 − x2α

)
satisfying det(ϕ(x)) = N(x).
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Forms of SL2

(I) The group G = (D ⊗F F̄ )∗ is thus isomorphic to GL2(F̄ ).
The left-regular representation of D realises G as an
algebraic subgroup of GL4(F̄ ) = GL(D ⊗F F̄ ) defined over
F . The subgroup SL1(D) of elements of reduced norm 1 in
G becomes a connected reductive group defined over F ,
isomorphic to SL2(F̄ ) over F̄ , but in general not over F (this
happens if and only if D ' M2(F ) as F -algebras, or
equivalently D is not a division algebra over F ).



Forms of SL2

(I) A good exercise: quaternion algebras over F , up to
isomorphism, are in bijection with non-degenerate quadratic
forms on F 3 with discriminant 1, up to equivalence, via
D → N|D0 , where D0 = Fi ⊕ Fj ⊕ Fk . The split quaternion
algebra M2(F ) corresponds to the unique (up to equivalence)
such isotropic form, x2 − y2 − z2.

(II) Using this one proves that over Qp or R there are exactly
two quaternion algebras up to isomorphism, so up to
isomorphism there is a unique quaternion division algebra
over such a local field.
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Forms of SL2

(I) It is much harder to classify quaternion algebras over Q (or
any number field), but this can be done using the
Hasse-Minkowski theorem. They are classified by finite sets
of places of Q of even cardinality, by sending a quaternion
algebra D to the set of places v of Q where D is ramified,
i.e. such that the quaternion algebra D ⊗Q Qv is a division
algebra over Qv .



Anisotropic groups

(I) Somewhat opposite to k-split groups are k-anisotropic
groups, i.e. connected reductive k-groups G containing no
nontrivial k-split torus.

(II) A k-torus T is k-anisotropic if and only if X (T )Galk = 0.
Any k-torus is (uniquely) the almost direct product of a split
k-torus and of an anisotropic k-torus. An important example
of k-anisotropic torus is the set of elements of norm 1 in

(L⊗k C)∗ '
∏

σ∈Gal(L/k)

C∗,

where L/k is a Galois extension of degree d > 1 (take
K = C here).
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Anisotropic groups

(I) The name comes from the following key result (excellent
exercise!): if F is a non-degenerate quadratic form in n
variables, with coefficients in k , the group O(F ) is
anisotropic over k if and only if F is anisotropic, i.e. the
equation F (x) = 0 has only the trivial solution in kn. Also, if
D is a quaternion division algebra over k, then SL1(D) is
anisotropic over k .

(II) If G is a k-group, we let X (G )k ⊂ X (G ) be the set of
morphisms G → Gm defined over k .

Theorem (Borel-Tits) A connected reductive k-group
G ⊂ GLn(K ) is anisotropic over k if and only if
X (G )k = {1} and the only unipotent matrix in G (k) is In.



Anisotropic groups

(I) One implication in the next theorem is trivial, but the other
one is quite hard. Gopal Prasad gave an amazing elementary
(but still a bit long...) proof.

Theorem (Bruhat-Tits) Let k = R or Qp for some prime
p. A connected reductive k-group G is k-anisotropic if and
only if G (k) is compact (for its natural topology).

We will see a global version, i.e. for Q-groups.



Arithmetic subgroups of algebraic groups

(I) If G ⊂ GLn(C) is a Q-group, we let

G (Z) := G ∩GLn(Z).

Contrary to G (Q), this depends on the embedding of G in
GLn(C), but not that much: by the next theorem, it is
well-defined up to commensurability. Two subgroups H1,H2

of a group H are commensurable if H1 ∩H2 has finite index
in both H1 and H2.

(II) If G is a Q-group, a subgroup Γ ⊂ G (Q) is called arithmetic
if Γ is commensurable to G (Z). This definition makes sense
by the above discussion.
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Arithmetic subgroups of algebraic groups

(I) Even the simplest structural properties of arithmetic groups
are quite hard to prove, see Borel’s book ”Introduction aux
groupes arithmétiques” or the (wonderful) book of Platonov
and Rapinchuk ”Algebraic groups and number theory” for
the very involved proofs. One of the few easy things is:

Theorem If ρ : G → GLm(C) is a Q-morphism of
Q-algebraic groups, then

a) ρ−1(GLm(Z)) contains a finite index subgroup of G (Z).

b) If ρ is injective, then ρ(G (Z)) is commensurable to
ρ(G )(Z).



Arithmetic subgroups of algebraic groups

(I) For a), note that

Γ(N) := ker(GLn(Z)→ GLn(Z/NZ))

has finite index in GLn(Z), thus Γ(N) ∩ G has finite index in
G (Z). Using that the entries of ρ(g) are polynomials in the
entries of g and det(g)−1, and that ρ(1) = 1, one easily
shows that for some sufficiently divisible N we have
Γ(N) ∩ G ⊂ ρ−1(GLm(Z)).

(II) For b), let H = ρ(G ), so that ρ : G → H is an isomorphism
of Q-groups (previous lecture). Now a) applied to both ρ
and its inverse easily yield b).
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Arithmetic subgroups of algebraic groups

(I) In particular if f : G → H is an isomorphism of Q-groups,
then the image of an arithmetic subgroup of G is an
arithmetic subgroup of H. It is much harder to prove that
the image of an arithmetic subgroup by a surjective
Q-morphism of Q-algebraic groups is arithmetic (a theorem
of Borel and Harish-Chandra).

(II) The next theorem is a huge generalisation of the fact that
GLn(Z) and SLn(Z) are finitely presented groups.

Theorem (Borel, Harish-Chandra) An arithmetic subgroup
of a Q-group is finitely presented, in particular finitely
generated.
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Arithmetic subgroups of algebraic groups
(I) Note that if G (R) is compact, then G (Z) is finite (as it is

discrete and closed in G (R)), so all arithmetic groups are
finite and the previous theorem is trivial.

(II) Take now D a quaternion division algebra over Q, split at
∞, i.e. D ⊗Q R ' M2(R). Then G = SL1(D) is anisotropic
over Q and we will see later on that G (Z) is a co-compact
lattice in G (R). Taking a suitable congruence subgroup, it is
easy to see that G (Z) has a finite index subgroup Γ that is
torsion-free.

(III) Then Γ acts freely on X = G (R)/K (K a maximal compact
of G (R)): if γ ∈ Γ fixes gK , then γ ∈ gKg−1 ∩ Γ and the
latter group is trivial (it is finite a priori, but Γ is
torsion-free). The quotient Γ\X is a compact manifold (by
the above discussion) with fundamental group Γ and thus Γ
is finitely presented, proving the theorem in this case.
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Arithmetic subgroups of algebraic groups
(I) The following fundamental and difficult result is goes back

to Hermite and Minkowski for G = SLn:

Theorem (Borel, Harish-Chandra) If G is a connected
semi-simple Q-group, then any arithmetic subgroup of G (Q)
is a lattice in G (R).

In particular, if G (R) is not compact then G (Z) is infinite.
This is a key ingredient in the proof of:

Theorem (Borel’s density theorem) If G is a connected
semi-simple Q-group with G (R) non compact, any
arithmetic subgroup of G is Zariski dense in G .

Excellent exercise (do it by hand!): SLn(Z) is Zariski dense
in SLn(C).



Arithmetic subgroups of algebraic groups

(I) One also deduces from the Borel-Harish-Chandra theorem
that for any Q-group G the subgroup G (Z) (or any
arithmetic subgroup) is a lattice in G (R) if and only if
X (G 0)Q = 1, i.e. there are no nontrivial morphisms
G 0 → Gm defined over Q.



Godement’s criterion

(I) For a Q-group G set

RG = G (Z)\G (R).

Note that Rn := RGLn(C) is the set of lattices in Rn, via the
map GLn(Z)g → g−1(Zn). The following beautiful result is
called Godement’s criterion:

Theorem (Borel– Harish-Chandra, Mostow– Tamagawa)
A connected reductive Q-group G is Q-anisotropic if and
only if G (Z)\G (R) is compact.

More generally, for an algebraic group G over Q the quotient
G (Z)\G (R) is compact if and only if the reductive part of
G 0 is anisotropic over Q.



Godement’s criterion

(I) Applied to the torus T = (F ⊗Q C)∗, with F a number field,
the next theorem (which is a consequence of the previous
one) gives Dirichlet’s unit theorem:

Theorem (Ono) Let T be a Q-torus and let
d = rkR(T )− rkQ(T ). There is a finite group µ such that

T (Z) ' µ× Zd .

Here, for a k-group G we let rkk(G ) be the dimension of any
k-split maximal torus in G , which is well-defined since they
are all conjugate by the Borel-Tits theorem.



Godement’s criterion

(I) The key input in the previous theorems is reduction theory,
i.e. finding nice approximations to fundamental domains for
G (Z)\G (R), cf. next lecture for the case of SLn and chapter
4 of Platonov-Rapinchuk or Borel’s book for the (very
painful) general case. The case of SLn gives the crucial:

Theorem (Mahler’s compactness criterion) If
M ⊂ GLn(R) is such that for some c > 0

det(g) ≥ c and inf
x∈ZnK{0}

||g−1x || ≥ c , ∀g ∈ M,

then the image of M in Rn has compact closure.

In human language: a set of lattices in Rn is relatively
compact if (and only if) their volumes are bounded and they
avoid a small ball.



Godement’s criterion

(I) The next result is at the heart of the proof of Godement’s
criterion:

Theorem Let G ⊂ GLn(C) be a reductive Q-group such
that | det(g)| = 1 for g ∈ G (R). If there is a G -invariant
polynomial P ∈ Q[Cn] such that the equation P(x) = 0 has
the only solution x = 0 in Qn, then RG = G (Z)\G (R) is
compact.

If D is a quaternion division algebra over Q, then
G = SL1(D) satisfies these conditions by taking the usual
embedding in GL4(C) ' GL(D ⊗ C) (via the left-regular
representation of D) and P(d) = det(md) = N(d)2.



Godement’s criterion

(I) We conclude (a special case of Godement’s criterion)

Theorem For a division quaternion algebra D over Q the
group SL1(D)(Z) is a co-compact lattice in SL1(D)(R).

When D is split at ∞ we have SL1(D)(R) ' SL2(R) and we
get many examples of co-compact lattices. However, there
are still many other (including continuous families!)
co-compact lattices in SL2(R). Amazingly, this breaks down
for SLn(R) with n > 2, by a very deep theorem of Margulis.



Godement’s criterion

(I) The embedding G ⊂ GLn(C) induces a continuous injection
iG : RG → Rn. A key nontrivial observation is:

Theorem The injection iG : RG → Rn is a homeomorphism
onto its image, which is closed in Rn.

More generally, the same argument shows that if H is a
reductive Q-subgroup of a connected Q-group G , then RH is
homeomorphic to a closed subset in RG .



Godement’s criterion

(I) Suppose that iG (G (Z)gk) converges to GLn(Z)g , i.e. γkgk
converges to g for some γk ∈ GLn(Z). We need to show
that there are uk ∈ G (Z) such that ukgk converges in G (R).

(II) By a theorem of Chevalley there is a representation
ρ : G → GL(V ) defined over Q and a rational vector v ∈ V
such that G = {g ∈ GL(V )| ρ(g)v = v}.

(III) Then ρ(γk)ρ(gk)v tends to ρ(g)v , thus ρ(γk)v → ρ(g)v .
But ρ(γk)v stay in a lattice, thus ρ(γk)v = ρ(g)v for k large
enough and so γ−1k g ∈ G (R) for k large enough, say k ≥ k0.
Then uk := γ−1k0

γk ∈ GLn(Z) ∩ G (R) = G (Z) and ukgk
tends to γ−1k0

g .
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Godement’s criterion

(I) Suppose now that there is P ∈ Q[Cn] invariant under G and
vanishing on Qn only at 0. Let’s prove that
RG = G (Z)\G (R) is compact. Since RG is (via iG ) a closed
subspace of Rn, it’s enough to show that the image of G (R)
in Rn is relatively compact.

(II) If this is not the case, since | det(g)| = 1 for g ∈ G (R),
Mahler’s criterion gives the existence of sequences gj ∈ G (R)
and vj ∈ Zn K {0} with gjvj → 0. But P(gjvj) tends to
P(0) = 0 and P is G -invariant, thus P(vj) tends to 0, but
since vj ∈ Zn and P ∈ Q[Cn], we must have P(vj) = 0 for j
large enough and, by hypothesis, vj = 0 as well, a
contradiction!
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Godement’s criterion
(I) We will prove now Godement’s criterion when G has trivial

centre (the general case reduces to this, but not after some
delicate work!). The following amazing proof is due to
Mostow and Tamagawa. Since G is anisotropic over Q, we
have X (G )Q = 1 and so | det(g)| = 1 for g ∈ G (R). The
hypothesis on the centre (plus the connectedness of G )
implies that Ad : G → GL(g) is injective, where g = Lie(G ).

(II) We will construct P ∈ Q[g]G such that P(x) = 0 has only
the solution X = 0 in g(Q). Write

det(T •1− X ) = T d +
d−1∑
i=0

pi (X )T i

and consider the polynomial

P =
d−1∑
i=0

P2
i .
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Godement’s criterion

(I) Then clearly P ∈ Q[g]G . If X ∈ g(Q) is a solution of
P(X ) = 0, then Pi (X ) = 0 for all i , so X is nilpotent. But
then eX ∈ G (Q) is unipotent, thus trivial (since G is
Q-anisotropic) and X = 0.



Adelic groups
(I) We will introduce now a new, but fundamental object. Let

G ⊂ GLn(C) be a Q-group. A key source of arithmetic
subgroups of G (Q) is given by the congruence subgroups

G (Z)(N) = ker(G (Z)→ GLn(Z)→ GLn(Z/NZ)).

(II) Whenever N | M there is a natural map Z/MZ→ Z/NZ,
and we can take the inverse limit of the system
(Z/NZ)N∈Z>0 to get a compact topological ring (the
profinite completion of Z)

Ẑ = lim←−
N

Z/NZ

of characteristic 0: the Chinese remainder theorem gives

Ẑ '
∏
p

Zp,

where Zp = lim←−n
Z/pnZ is the ring of p-adic integers. Let

Qp = Zp[1/p], the field of p-adic numbers.
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Adelic groups

(I) The group G (Ẑ) := G ∩GLn(Ẑ) depends on the embedding
of G in GLn(C). To get rid of the dependence on the
embedding of G , we define the ring Af of finite adèles

Af = Ẑ⊗Z Q

and endow it with a locally compact topology having NẐ
(N ∈ Z>0) as a basis of open neighborhoods of 0. Finally,
we define the (locally compact) ring of adèles

A = R× Af .

(II) More concretely, letting Q∞ = R and

P = {2, 3, 5, ...} ∪ {∞}

be the set of places of Q, the ring A is the subring of∏
v∈PQv consisting of sequences (av )v such that av ∈ Zv

for almost all (i.e. all but finitely many) v .
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Adelic groups

(I) Let G ⊂ GLn(C) be a Q-group. Contrary to G (Qv ), the
group G (Zv ) = G ∩GLn(Zv ) depends on the embedding
G ⊂ GLn(C), but if we pick another embedding, the
resulting groups are the same for almost all v and

G (A) ' {(gv )v ∈
∏
v∈P

G (Qv )| gv ∈ G (Zv ) for almost all v}.

(II) The topology of A is not induced by that of
∏

v Qv . Rather,
a basis of open neighborhoods of a = (av ) ∈ A is given by
sets of the form

∏
v∈S Uv ×

∏
v /∈S Zv , with S ⊂P finite,

containing ∞, and Uv open neighborhoods of av .

(III) The natural map [0, 1]× Ẑ→ A/Q is surjective and
Q ∩ (−1, 1)× Ẑ = {0}, thus Q is a co-compact lattice in A
(while Q is dense in Af !). The inclusion Q→ A is an
analogue of the embedding Z→ R.
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Adelic groups

(I) For any affine variety X over Q we can endow X (A) with a
canonical locally compact topology, the weakest one for
which f : X (A)→ A is continuous for any f ∈ Q[X ].
Concretely, if X ⊂ Cn is Zariski closed, then this topology is
the one induced from the product topology on An. Caution:
the topology on A∗ = GL1(A) is not the one induced by A
(for which it is not even a topological group!), but from A2

via the embedding x → (x , x−1). So a basis of
neighborhoods of 1 is given by

∏
v Uv with Uv a

neighborhood of 1 in Q∗v and Uv = Z∗v for almost all v .



Adelic groups

(I) There is a continuous norm character

|•| : A∗ → R>0, |x := (xv )v | =
∏
v

|xv |v

trivial on Q∗ and Q∗\A∗ surjects onto R>0, so Q∗ is not
co-compact in A∗. However, letting A1 = ker(|•|), the
quotient A1/Q∗ is compact (exercise!).

(II) If G is a Q-group, G (A) becomes a locally compact group
containing G (Q) as a discrete subgroup. G (Q) is to G (A)
what G (Z) is to G (R). For any rational character
χ ∈ X (G )Q we get a continuous character χ : G (A)→ A∗,
which we can compose with A∗ → R>0 to get a character
|•| ◦ χ : G (A)→ R>0. Concretely

|χ|((gv )v ) =
∏
v

|χ(gv )|v .
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Adelic groups

(I) We have the following fundamental theorem, in which

G (A)1 =
⋂

χ∈X (G)Q

ker |•| ◦ χ

Theorem (Borel) For a connected reductive Q-group G

a) G (Q) is a lattice in G (A)1, so G (A)1 is unimodular.

b) G (Q) is a lattice in G (A) if and only if X (G )Q = 1 (or
equivalently G (Z) is a lattice in G (R)).

c) G (Q) is a co-compact lattice in G (A) if and only if G (Z)
is a co-compact lattice in G (R), thus if and only if G is
anisotropic over Q.



Adelic groups

(I) One can prove this (except for the unimodularity issues,
discussed in the next lecture) using the following deep result,
called the finiteness of the class number, and the case of
arithmetic subgroups of G (Q):

Theorem (Borel) For any compact open subgroup
Kf ⊂ G (Af ) the set G (Q)\G (Af )/Kf is finite.

Taking a finite set of representatives xi ∈ G (Af ), one obtains
a homeomorphism (send Γig to the class of (g , xi ))∐

Γi\G (R) ' G (Q)\G (A)/Kf

with Γi = G (Q) ∩ xi (G (R)× Kf )x−1i arithmetic (even
congruence) subgroups of G (Q).



Adelic groups

(I) Take for instance G = SL2(C). We will see next time that
for any compact open subgroup Kf ⊂ G (Af )

G (Q)\G (A)/Kf ' (G (Q) ∩ Kf )\G (R).

For
Kf = K0(N) :=

∏
p|N

Kp ×
∏

gcd(p,N)=1

G (Zp),

with Kp the matrices in G (Zp) reducing mod p to an upper
triangular matrix, we obtain Γ0(N) = G (Q) ∩ K0(N) and

G (Q)\G (A)/K0(N) ' Γ0(N)\G (R).

(II) A similar argument gives the beautiful description

G (Q)\G (A) ' lim←−
N

Γ(N)\G (R),

with Γ(N) := ker(G (Z)→ G (Z/NZ)).
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